Multiresponse Sparse Regression with Application to Multidimensional Scaling

نویسندگان

  • Timo Similä
  • Jarkko Tikka
چکیده

Sparse regression is the problem of selecting a parsimonious subset of all available regressors for an efficient prediction of a target variable. We consider a general setting in which both the target and regressors may be multivariate. The regressors are selected by a forward selection procedure that extends the Least Angle Regression algorithm. Instead of the common practice of estimating each target variable individually, our proposed method chooses sequentially those regressors that allow, on average, the best predictions of all the target variables. We illustrate the procedure by an experiment with artificial data. The method is also applied to the task of selecting relevant pixels from images in multidimensional scaling of handwritten digits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Combination of SOMs for Data Imputation: Application to Financial Problems Linear Combination of SOMs for Data Imputation: Application to Financial Problems

This paper presents a new methodology for missing value imputation in a database. The methodology combines the outputs of several Self-Organizing Maps in order to obtain an accurate filling for the missing values. The maps are combined using MultiResponse Sparse Regression and the Hannan-Quinn Information Criterion. The new combination methodology removes the need for any lengthy cross-validati...

متن کامل

Sparse Linear Combination of SOMs for Data Imputation: Application to Financial Database

This paper presents a new methodology for missing value imputation in a database. The methodology combines the outputs of several Self-Organizing Maps in order to obtain an accurate filling for the missing values. The maps are combined using MultiResponse Sparse Regression and the Hannan-Quinn Information Criterion. The new combination methodology removes the need for any lengthy cross-validati...

متن کامل

Large Scale Sensor Network Localization

There have been wide application of sensor network localization techniques in wireless network, environmental monitoring, Global Positioning System (GPS), habitant monitoring and so on. The essential techniques include Multidimensional Scaling (MDS), Semidefinite (Conic) Programming (SDP) and their variants. When we are given the information about the pairwise dissimilarity measures (for exampl...

متن کامل

α-Molecules: Curvelets, Shearlets, Ridgelets, and Beyond

The novel framework of parabolic molecules provides for the first time a unifying framework for (sparse) approximation properties of directional representation systems by, in particular, including curvelets and shearlets. However, the considered common bracket is parabolic scaling, which excludes systems such as ridgelets and wavelets. In this paper, we therefore provide a generalization of thi...

متن کامل

Sparse multidimensional scaling using landmark points

In this paper, we discuss a computationally efficient approximation to the classical multidimensional scaling (MDS) algorithm, called Landmark MDS (LMDS), for use when the number of data points is very large. The first step of the algorithm is to run classical MDS to embed a chosen subset of the data, referred to as the ‘landmark points’, in a low-dimensional space. Each remaining data point ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005